FTQuant  0.1
BlackSholes.cpp
Go to the documentation of this file.
1 #include <algorithm>
2 #include <iostream>
3 #include <random>
4 
5 #include <BlackSholes.hpp>
6 
7 std::vector<std::vector<double>> BlackScholes::generate_paths(
8  int n_paths, int steps, double T, double spot, bool antithetic) {
9  std::random_device rd{};
10  std::mt19937 gen(rd());
11 
12  std::vector<std::vector<double>> paths;
13  std::normal_distribution<double> Normal(0, 1);
14  double dt = T / steps;
15  double sqdt = sqrt(dt) * sigma;
16  double r_sigma_dt = (this->r - 0.5 * sigma * sigma) * dt;
17 
18  if (antithetic) {
19  for (int i = 0; i < n_paths; ++i) {
20  std::vector<double> path1;
21  std::vector<double> path2;
22  path1.push_back(0);
23  path2.push_back(0);
24 
25  for (int j = 1; j <= steps; ++j) {
26  double sigma_dw = sqdt * Normal(gen);
27  path1.push_back(path1[j - 1] + r_sigma_dt + sigma_dw);
28  path1[j - 1] = spot * exp(path1[j - 1]);
29 
30  path2.push_back(path2[j - 1] + r_sigma_dt - sigma_dw);
31  path2[j - 1] = spot * exp(path2[j - 1]);
32  }
33  path1[path1.size() - 1] = spot * exp(path1[path1.size() - 1]);
34  path2[path2.size() - 1] = spot * exp(path2[path2.size() - 1]);
35 
36  // std::cout << "path: " << path1.size() << std::endl;
37 
38  paths.push_back(path1);
39  paths.push_back(path2);
40  }
41  } else {
42  for (int i = 0; i < n_paths; ++i) {
43  std::vector<double> path1;
44  path1.push_back(0);
45 
46  for (int j = 1; j <= steps; ++j) {
47  double sigma_dw = sqdt * Normal(gen);
48  path1.push_back(path1[j - 1] + r_sigma_dt + sigma_dw);
49  path1[j - 1] = spot * exp(path1[j - 1]);
50  }
51  path1[path1.size() - 1] = spot * exp(path1[path1.size() - 1]);
52 
53  paths.push_back(path1);
54  }
55  }
56  return paths;
57 }
58 
59 void BlackScholes::calibrate(std::vector<double>& stock_prices) {
60  double mean = 0;
61  double std = 0.;
62  int N = stock_prices.size();
63  for (auto stock_price : stock_prices)
64  mean += (stock_price / N);
65  for (auto stock_price : stock_prices)
66  std += (stock_price - mean) * (stock_price - mean) / (N - 1);
67  this->r = mean;
68  this->sigma = sqrt(std);
69 }
70 
71 std::vector<std::vector<double>> BlackScholes::pde_pricer(
72  double r, double sigma, double T, std::function<double(double)> payoff,
73  double S_max, double S_min, int M, int N) {
74  double h = (S_max - S_min) / N; //s step
75  double tau = T / M; //time step
76  std::vector<std::vector<double>> u; // create a return matrix
77  u.resize(M + 1, std::vector<double>(N + 1)); //set the required dimensions
78  //Step 1:initialize the zero time layer with the payoff function
79  for (int j = 0; j < N + 1; j++) {
80  u[0][j] = payoff(S_min + j * h);
81  }
82  //Step 2:calculate first time layer
83  u[1][1] = u[0][1] +
84  tau * (pow(sigma, 2) * pow(S_min + h, 2) *
85  (u[0][2] - 2 * u[0][1] + u[0][0]) / 4 / pow(h, 2) +
86  r * (S_min + h) * (u[0][2] - u[0][0]) / 2 / h - r * u[0][1]);
87  u[1][N - 1] =
88  u[0][N - 1] +
89  tau * (pow(sigma, 2) * pow(S_min + (N - 1) * h, 2) *
90  (u[0][N] - 2 * u[0][N - 1] + u[0][N - 2]) / 4 / pow(h, 2) +
91  r * (S_min + (N - 1) * h) * (u[0][N] - u[0][N - 2]) / 2 / h -
92  r * u[0][N - 1]);
93  std::vector<double> a;
94  a.resize(N);
95  std::vector<double> b;
96  b.resize(N);
97  std::vector<double> c;
98  c.resize(N);
99  std::vector<double> f;
100  f.resize(N);
101  c[1] = 1;
102  b[1] = 0;
103  f[1] = u[1][1];
104  for (int j = 2; j <= N - 2; j++) {
105  b[j] = a[j] = tau * pow(sigma, 2) * pow(S_min + j * h, 2) / 4 / pow(h, 2);
106  c[j] = 1 + tau * pow(sigma, 2) * pow(S_min + j * h, 2) / 2 / pow(h, 2);
107  f[j] = tau *
108  (pow(sigma, 2) * pow(S_min + j * h, 2) / 4 / pow(h, 2) -
109  r * (S_min + j * h) / 2 / h) *
110  u[0][j - 1] -
111  tau * (pow(sigma, 2) * pow(S_min + j * h, 2) / 2 / pow(h, 2) + r) *
112  u[0][j] +
113  u[0][j] +
114  tau *
115  (pow(sigma, 2) * pow(S_min + j * h, 2) / 4 / pow(h, 2) +
116  r * (S_min + j * h) / 2 / h) *
117  u[0][j + 1];
118  }
119  c[N - 1] = 1;
120  a[N - 1] = 0;
121  f[N - 1] = u[1][N - 1];
122  thomas_algorithm(u[1], a, b, c, f);
123  u[1][0] = 2 * u[1][1] - u[1][2];
124  u[1][N] = 2 * u[1][N - 1] - u[1][N - 2];
125  //Step 3:calculate remaining time layers
126  for (int k = 2; k <= M; k++) {
127  u[k][1] = u[k - 1][1] +
128  tau * (r * (S_min + h) * (u[k - 1][2] - u[k - 1][0]) / 2 / h -
129  r * u[k - 1][1]);
130  u[k][N - 1] =
131  u[k - 1][N - 1] + tau * (r * (S_min + (N - 1) * h) *
132  (u[k - 1][N] - u[k - 1][N - 2]) / 2 / h -
133  r * u[k - 1][N - 1]);
134  c[1] = 1;
135  b[1] = 0;
136  f[1] = u[k][1];
137  for (int j = 2; j <= N - 2; j++) {
138  b[j] = a[j] = tau * pow(sigma, 2) * pow(S_min + j * h, 2) / 4 / pow(h, 2);
139  c[j] = 1 + tau * pow(sigma, 2) * pow(S_min + j * h, 2) / 2 / pow(h, 2);
140  f[j] = tau *
141  (pow(sigma, 2) * pow(S_min + j * h, 2) / 4 / pow(h, 2) -
142  r * (S_min + j * h) / 2 / h) *
143  u[k - 1][j - 1] -
144  tau * (pow(sigma, 2) * pow(S_min + j * h, 2) / 2 / pow(h, 2) + r) *
145  u[k - 1][j] +
146  u[k - 1][j] +
147  tau *
148  (pow(sigma, 2) * pow(S_min + j * h, 2) / 4 / pow(h, 2) +
149  r * (S_min + j * h) / 2 / h) *
150  u[k - 1][j + 1];
151  }
152  c[N - 1] = 1;
153  a[N - 1] = 0;
154  f[N - 1] = u[k][N - 1];
155  thomas_algorithm(u[k], a, b, c, f);
156  u[k][0] = 2 * u[k][1] - u[k][2];
157  u[k][N] = 2 * u[k][N - 1] - u[k][N - 2];
158  }
159  //Step 4: reverse time back
160  std::reverse(u.begin(), u.end());
161  //Step 5:removing emissions
162  for (int k = 0; k <= M; k += 100) {
163  for (int j = 0; j <= N; j++) {
164  if (u[k][j] < 0.00001)
165  u[k][j] = 0;
166  }
167  }
168  return u;
169 }
Contains the definition of the Black-Sholes model.
void thomas_algorithm(std::vector< double > &v, std::vector< double > &a, std::vector< double > &b, std::vector< double > &c, std::vector< double > &f)
Implementation of Thomas algorithm for tridiagonal matrices.
std::vector< std::vector< double > > pde_pricer(double r, double sigma, double T, std::function< double(double)> payoff, double S_max, double S_min, int M, int N)
Definition: BlackSholes.cpp:71
std::vector< std::vector< double > > generate_paths(int n_paths, int steps, double T, double spot, bool antithetic=true)
Definition: BlackSholes.cpp:7
void calibrate(std::vector< double > &stock_prices)
Definition: BlackSholes.cpp:59