6 sigma = [](
double a,
double b) {
15 std::random_device rd{};
16 std::mt19937 gen(rd());
18 std::vector<std::vector<double>> paths;
19 std::normal_distribution<double> Normal(0, 1);
20 double dt = T / steps;
21 double sqdt = sqrt(dt);
23 for (
int i = 0; i < n_paths; ++i) {
25 std::vector<double> path;
29 for (
int j = 1; j <= steps; ++j) {
30 double sigma_val = this->sigma(ti, exp(path[j]));
31 path.push_back(path[j - 1] +
32 (this->r - 0.5 * sigma_val * sigma_val) * dt +
33 sigma_val * sqdt * Normal(gen));
35 path[j - 1] = spot * exp(path[j - 1]);
37 path[path.size() - 1] = spot * exp(path[path.size() - 1]);
38 paths.push_back(path);
44 std::vector<double>& T,
45 std::vector<double>& y,
double spot) {
50 auto glambda = [w, r_, spot](
double t,
double k) {
51 double y_ = log(k / exp(r_ * t) * spot);
52 double w_ev = w.
eval(t, y_);
57 double y_over_w_ev = y_ / w_ev;
59 1 - y_over_w_ev * Dx_w +
60 0.25 * (-0.25 - 1. / w_ev + y_over_w_ev * y_over_w_ev) * Dx_w * Dx_w +
63 return sqrt(Dt_w / denom);
65 this->sigma = glambda;
Contains the definition of the Dupire's local volatility model class.
int calibrate_dupire(std::vector< std::vector< double >> &w, std::vector< double > &T, std::vector< double > &y, double spot)
std::vector< std::vector< double > > generate_paths(int n_paths, double spot, int steps, double T)
Implementation of 2d spline interpolation on a rectangular grid.
void fit(const std::vector< double > &x, const std::vector< double > &y, const std::vector< std::vector< double >> &f)
double partial_derivative(double x_, double y_, int dx, int dy) const
double eval(double x_, double y_) const