FTQuant  0.1
ftqlib.hpp
Go to the documentation of this file.
1 
14 #ifndef FTQUANT_LIBRARY_HPP
15 #define FTQUANT_LIBRARY_HPP
16 
17 #include <cmath>
18 #include <functional>
19 #include <string>
20 #include <vector>
21 
22 #include "BlackSholes.hpp"
23 #include "LocalVolatility.hpp"
24 
25 [[maybe_unused]] const int ERROR_MATHEMATICS =
26  -1;
27 [[maybe_unused]] const int SUCCESS = 0;
28 [[maybe_unused]] const int ERROR_NO_CONVERGENCE =
29  1;
30 [[maybe_unused]] const int ERROR_INVALID_INPUT =
31  2;
32 [[maybe_unused]] const int ERROR_INVALID_MODEL =
33  3;
44  public:
45  MonteCarloResult(int result_code, int n_simulations, double error,
46  double result)
47  : result_code(result_code),
48  n_simulations(n_simulations),
49  error(error),
50  result(result) {}
51 
52  [[nodiscard]] std::string to_json() const;
53 
54  private:
55  int result_code;
56  int n_simulations;
57 
58  double error;
59  double result;
60 };
61 
66 template <typename T>
68  private:
69  T model;
70 
71  public:
72  MonteCarloPricer(T model) : model(model) {}
73 
84  MonteCarloResult estimate_price(std::function<double(double)> payoff,
85  double absolute_error, int steps, double time,
86  double spot, bool antithetic = true,
87  double confidence_level = 0.95,
88  int num_simulations_per_round = 1000) {
89 
90  const double t_critical = 1.96; // TODO: use a table of t-critical values
91 
92  int n_simulations = 0;
93  int n_iterations = 0;
94  int result_code = ERROR_NO_CONVERGENCE;
95 
96  double result = 0.;
97  double error = 0.;
98  double result_var = 0.;
99 
100  do {
101  double sum = 0;
102  double sum2 = 0;
103 
104  ++n_iterations;
105  n_simulations += num_simulations_per_round;
106 
107  auto paths = model.generate_paths(num_simulations_per_round, steps, time,
108  spot, false);
109  for (auto path : paths) {
110  double payoff_value = payoff(path.back());
111  sum += payoff_value;
112  sum2 += payoff_value * payoff_value;
113  }
114 
115  auto mean = sum / num_simulations_per_round;
116  auto mean2 = sum2 / num_simulations_per_round;
117  auto sample_var = (mean2 - mean * mean); // / num_simulations_per_round;
118 
119  result_var =
120  ((n_iterations - 1) * result_var + sample_var) / (n_iterations);
121  result = (n_iterations * result + mean) / (n_iterations + 1);
122 
123  error = t_critical * abs(result_var) / sqrt(n_simulations);
124 
125  result_code = error < absolute_error ? SUCCESS : ERROR_NO_CONVERGENCE;
126  } while (result_code != SUCCESS && n_simulations < 10000000);
127 
128  return {result_code, n_simulations, error, result};
129  }
130 };
131 
136 template <typename T>
138  private:
139  T model;
140 
141  public:
142  PartialDiffEqPricer(T model) : model(model) {}
143 
144  double calculate_price(const std::function<double(double)>& payoff,
145  double absolute_error);
146 };
147 
148 #endif //FTQUANT_LIBRARY_HPP
Contains the definition of the Black-Sholes model.
Contains the definition of the Dupire's local volatility model class.
A controller for derivatives pricing via a Monte-Carlo simulation.
Definition: ftqlib.hpp:67
MonteCarloPricer(T model)
Definition: ftqlib.hpp:72
MonteCarloResult estimate_price(std::function< double(double)> payoff, double absolute_error, int steps, double time, double spot, bool antithetic=true, double confidence_level=0.95, int num_simulations_per_round=1000)
A function that estimates the price of a given derivative via a Monte-Carlo simulation with a chosen ...
Definition: ftqlib.hpp:84
A container for storing the result of a Monte-Carlo simulation.
Definition: ftqlib.hpp:43
std::string to_json() const
A function that converts a MonteCarloResult to a JSON string.
Definition: MonteCarlo.cpp:14
MonteCarloResult(int result_code, int n_simulations, double error, double result)
Definition: ftqlib.hpp:45
A controller for derivatives pricing via a PDE solution.
Definition: ftqlib.hpp:137
PartialDiffEqPricer(T model)
Definition: ftqlib.hpp:142
double calculate_price(const std::function< double(double)> &payoff, double absolute_error)
const int ERROR_INVALID_INPUT
Error code for invalid input-related issues.
Definition: ftqlib.hpp:30
const int ERROR_MATHEMATICS
Error code for any mathematical errors.
Definition: ftqlib.hpp:25
const int ERROR_INVALID_MODEL
Error code for model-related issues.
Definition: ftqlib.hpp:32
const int SUCCESS
Success code.
Definition: ftqlib.hpp:27
const int ERROR_NO_CONVERGENCE
Error code for lack of convergence in simulations and other numerical estimations.
Definition: ftqlib.hpp:28